PROPAGATION RATE AND LIMITS OF EXISTENCE
OF A TURBULENT FLAME

V. 8. Baushev and V. N. Vilyunov UDC 536.46:533.6

In a theoretical study of turbulent burning it is usually assumed that the average rate of the
chemical reaction (heat release) is determined only by the average temperature. Ya. B.
Zel'dovich [1] and later T. Karman [2] noted the necessity of taking into account the effect
of temperature pulsations on the reaction rate. A quantitative estimate of this effect on the
reaction rate constant is given in [3]. A critical analysis of various approaches to the theo-
retical study of turbulent flames is given in the reviews [4, 5]. In the present article, it is
shown that, taking the pulsation component of the temperature and concentration into ac-
count, the average rate of the chemical reaction depends on the gradient of the mean tem-
perature and the scale of the turbulent pulsations. The case, where a first-order reaction
takes place in the flame is studied in detail. Existence and uniqueness theorems which de~
termine the limits of the propagation of flames are proven. Quantitative rules for the prop-
agation rate, limit, and structure of a turbulent flame front are analyzed with respect to
the results of a numerical calculation of a series of variants. Dimensional interpolation
equations are presented for the total propagation rate of a flame.

1. Statement of the Problem

In a statistical averaging approach to the description of a one-dimensional diffusion-thermal model of
the propagation of a turbulent flame in the presence of a similarity in temperature and concentration (equal-
ity of the total coefficients of heat and mass transfer of laminar and turbulent flames, gy + a; = Dy + Dy) and
ignoring thermal expansion, we proceed from the equation

[ g — oz ] <O =8 <O (®)) t.1)

with the conditions
where &(p) is the real rate of the chemical reaction
—8

@ (6) = 0" exp (m) 1.2)

6Y, (®(0)), £, and wy are the dimensionless average temperature, average chemical reaction rate, coordi-
nate, and kinetic propagation rate of a turbulent flame, respectively. The connections between the dimen-

sionless and dimensional values, the scale of measurement, and the parameters of the problem are deter-
mined by the equalities

_ E(T,—<T») oz
<9>~”“—Hr—p+?—, 5‘;:7 T

Tomsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekbnicheskoi Fiziki, No. 3, pp. 65-76, May-
June, 1972. Original article submitted October 21, 1971.

© 1974 Consultants Bureauw, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. 1
copy of this article is available from the publisher for §15.00.

317



AY

1 - E
.73+ = [(ao + al) T+] /21 1:+ = pl nz() ! exp( HT+ )

0 - BT —T)
L' M RT+2 3

o = w{a, -+ al)_‘hf‘&/' {1.3)

Here, T is the temperature, x is the Eulerian coordinate, ¢ and D are the thermal conduction and dif-
fusion coefficients, respectively, p is the density, z; is the preexponential factor, E is the activation energy,
R is the gas constant, n is the order of the reaction, w is the propagation rate of the flame, and 7+ is the
characteristic time of the reaction. Parameters characterizing laminar and turbulent burning are denoted

by the indices 0 and 1, respectively, while plus and minus are indices denoting values which characterlze
the reaction product and the original mixture.

The left-hand part of the differential operator in Eq. (1.1) is obtained on the basis of Reynolds averag-
ing. Averaging the right-hand part is particularly difficult because the function of the instantaneous chem-
ical reaction rate (1.2) is essentially nonlinear. Several approaches are possible here. The most general
approach consists in the expansion of (®((6) + 9‘)) in a Taylor series and the subsequent application of Rey-
nolds rules

DBy + 8> = (DO + DO +
+ D (8 82 ... = D(B)) + 1D (<8)) <Oy ... (1.4)

Here, and afterward dots denote differentiation with respect to 9, and a dash denotes turbulent pulsa-
tion.

With some assumptions relative to the chief moments of the pulsations, summation series are ob-
tained which considerably facilitate a theoretical analysis of turbulent burning. The chief terms of the ex-
pansion (1.4) are presented in [6]. Another approximating approach is the use of the simplest rule of mean
arithmetic averaging

2¢(DO)y = DO + V) + DKoy — V67 (1.5)

The averaging (1.5) satisfies all the Reynolds rules. The averaging (1.5) was used in {3] for a zero-
order reaction. In the general case of Eq. (1.2), we have ‘

In particular, if (4"™) = 0 for even m and (¢"™) = (VD™ for odd m, then, for 8 = 0 averaging by
means of (1.6) coincides with averaging by the series expansion method (1.4).

The mean square pulsation component of the temperature in Eq. (1.6) according to the theory of the
mixing process is expressed through gradients of the averaged temperature

d 0> e E VIR
| ViR= T a.7)

V- L

Ty

where [; is the thermal scale of the pulsations. Thus, the mean chemical reaction rate, as opposed to the
actual rate, depends not only on the temperature, but on the gradient and relative scale of the turbulent pul-
sations F = Iy /x+.

The parameter F characterizes the kinetic and hydrodynamic properties of turbulent bﬁrning. As-
suming that a; = {4V w'?, where ¥ w'? is the mean square pulsation component of the flux rate, we obtain

Lt b [lo Vw'z] (1.8)

F2w02 - ll ll Wy

ly=ag/wy, o =1li/ly Is=wT,

Here, w; is the dimensionless laminar burning rate, / is the thermal width of the laminar flame front,
and I, is the chemical width of the flame front. For large-scale turbulence with v w'/wy > §y/l » Fis re-
lated to the well-known parameters of turbulent burning of K. I. Shchelkin {7] and Kovazhnii {8]
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Here, 71 = {;/Yw'? is the turbulent mixing time, and 7y = [;/W, is the thermal relaxation time of the laminay
flame.

We shall examine the first-order reaction in detail later. Shifting to a new variable (for brevity, we
shall drop the averaging sign and the index 1)

[GH _ du (1.9)
N dE

we reduce the problem of the propagation rate of a flame to the boundary problem

1.19)
dp/du =®/p — 0, 0<<u<<1
PWO)=0 {1.11)
P(1)y=0 1.12)
—Bn u—+ F —90 u—F
1o 1 o0 [ el o<
0, e<Cu<C1 1.13)

Because & is even, the sigh of the modulus p in Eq. (1.13) is not written. In the physical sense of the
problem

©>0,F>0,0,>00=p0,=1—7_/T, <1

Since Eq. (1.10) is first order, in general, there does not exist a solution at once satisfying the two
conditions (1.11) and (1.12) except, perhaps, for a few values of w.

2. Existence and Uniqueness. Limits of Propagation

The point (0, 0) is a singular saddle point for Eq. (1.10). Two solutions emerge from it: p;(u) and
pofu). The slopes of the integral curves at the singular point are the roots of the equation

M4 oh—1=0 2.1)

dp; (0) o ? dp2(0) . ] o
T —h=— g Vet B kg S

Proposition 1. Suppese (0, ux) is the region of a noncontinuous solution ({81, p. 173) p;(w). Then, for
w and F, it can be shown that there is a k =k(u,, w, F) > 0, such that in the interval (0, ux) the following
inequality is satisfied:
p (W) —ku>>0 (2.2)

We select k in such a way as to satisfy the inequality

—8(1—Fk)u . — 0 {1+ FE
LEI/2(1 — Flf) exp [Tﬁ:ﬁ] +1/2 (1—f—F1£)eXp [r_—;%rﬁ‘k))—%] — 20k — k2>0 (2.3)

Since

L>1,(1 — Fk)exp [%] — 20k — k2> {for (1 —
— Fk)> 0> (1 — Fk) A — 20k — 12, 24 — exp [:EL]

1—ouy

Eq. (2.3) holds if k satisfies the equation

(1 — FR)A — 20k — k* = (2.4)
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where
h=—(0+ AF12)+V (o +AF j2F + 4 (2.5)

is its positive root. We shall show that Eq. (2.2) is satisfied with
this k. We rewrite Eq. (2.4) in the form

k2 + ok — 1]+ l(0 + AF)k + (1 — A)] = 0

We assume that k = Ay, so that on the strength of (2.1), the ex~
pression in the first brackets is non-negative and in the second
brackets is positive, which means that the left-hand part is strictly
Fig. 1 positive; but this is impossible, consequently,. k<A;. Therefore,
(2.2) is satisfied in the vicinity of u = 0. If it is assumed that for
some 0 < uy < uy, the equality

D1 () — kug = 0
holds, then, at the point u, it follows that

dpr @ (ue, p1{un)) .
T T ® Ipsua—tru, < K

which is impossible, since the latter inequality violates (2.3).

Result. As u—u, the point of the integral curve (u, p;{u)) approaches without limit to the line u+
Fp= o~ (Fig. 1).

Actually, p;(w is enclosed between the lines p=0and u+ Fp = o, at which the right-hand part of
(1.10) undergoes a discontinuity. As u—u,, the point of the integral curve (u, p;(u)) should approach with~-
out limit to one of the given lines ([9], p- 175). Because of (2.2}, this line cannot be p = 0.

Note. If {0, uxy) is a region of the noncontinuous solution p,(u), the existence of a number ky < 0 (for
example, the negative root of (2.4)) can be demonstrated which will satisfy the inequality py(w)—ksu < 0 in
this region and at u —~usy the point of the integral curve (u, ps(u)) approaches without limit to the line u~

R R
Fp=o¢~ (Fig. 1).

We shall study the behavior of the function & at the solution py{u). Since &(0, p;{0)) = 0, and

b 4D | 8D dp

de ~ ou ap; du

u=0

® is positive in the vicinity of u=0. Let &> 0at 0 < u < uy and &y, p1y) = 0, pig = pPi{uy). Then, it is
necessary that

@) 2.6)
du |u=u,
It is evident that
oD B0 (w0 -+ F pio) ~— @a (o + F p1o)
2 G o pao) > {1 — 2 e [y |
We rewrite the expression on the right-hand side of the inequality in the form
(D) =1—BZ+ —1) exp(— D)
. 8o (10 -+ F pro -
fm gl FP0 0yt Fpig <™, 0G0
The value ¢(¢) is non-negative, if
info=1—@4B+1)e2>0
>0
or
2.7)

B<CY, (e* — 1) =~ 1.597
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It is also evident that

1
t/fo
i_&_(_g_ (1 8 (uo - F pin) —Bo(uo+ Fpuw) 7
75 o Pro) <\l = =g et Fple}}z} exp [ T (wo s Fou)|
/
I We represent the right-hand part of this inequality in the form
J (]
€1 /6
7 ! Y =—1—BC+ -1 exp(— 8 =09 —2
7
It is not difficult to verify that ¥ (2) < 0 for ¢ > 0. Thus, if 8
T satisfies the condition (2.7), then
-1/fe

oD D
Fig. 2 'gu—(uo, P1o) >0, e (U, P10} <0

Considering that

dp

du (uo) =—0

we obtain

4D
du U=

uo>0

Since this inequality violates (2.6) this indicates that when satisfying the condition (2.7) &(u, py) can-
not be reduced to zero. It is shown analogously that (2.7) is a sufficient condition for the positivity of & in
the solution p,(u). The function & is not negative in a physical sense. Therefore, we shall henceforth, as-
sume that g satisfies the condition (2.7). The physical restriction (2.7) is always satisfied since g < 1.

Proposition 2. If (0, u 4} is the region of the noncontinuous solution p; {u), thenu, = 0.5 oL,
Cn the strength of the result of proposition 1
lim (u+ Fp)) = ot

U—U,

or

lim Fp, = ¢ —u,
U,

Since

lim (z + Fp,)exp

UU

— 0o (u - Fpy) =0
[1—6(u+Fp1) -

it follows that

lim @ = (u, — 0.567Y)exp [

Uy

— B0 (g — 0.55—X)]

1 —cuy,

If it is assumed that u, < 0.5 o1, then, as seen from the latter expression, an area around the point
u =u, is found in which & will be negative, but this is impossible because &, p;) > 0.

Note. If (0, u,q) is the region of the noncontinuous solution py(u) it can be shown that uyy=0.5 oL,

Result. For any F > 0, there exists a unigue w > 0, for which a solution of Eq. {1.10) satisfies the
conditions (1.11) and (1.12) if

05 ct>e 2-8)

The proof is conducted by the method of Ya. B. Zel'dovich [10]. We shall designate the solution of
(1.10) with the condition (1.11) as ps(u), where 0 < u < &. On the strength of Proposition 2 and (2.8), u, =z ¢,
so that the following limits make sense:

lim pje (u) = Pie(8), J=1,2

u-—re

Since & is positive, pig(e) > 0 and pye (e) < 0 at w = 0. We shall introduce into the examination of the
derivative of the solution p (now either pig or psg)

321



- p(ey
1= %

Since plw, 0) = 0, then q(0) = 0. The equation for g is obtained by differentiating (1.10) with respect

to w

dg _ 8@ ;
w=155(5)

while its solution, taking info account the condition at u = 0, has the form

U

fon (-2

It follows from this that q is negative. The solutions of (1.10} with the condition (1.11) in the region
(0, 1) are

q=*exp(

P 33
S
—
~|e
~——
.
&
—~——
D

_{;pji(u)v . 0<u<8
pj= Die(8) — o (u — &), e<Su<1
where
Dj ((1)7 1) = Pie (C‘)v 8) - @ (1 _— 8)
Since

dp. (o, :
Y ) — e < — (1 )

pj (w, 1) decreases monotonically, and without limit with an increase in w. Since

PO, 1) = puc (0, €)= — pye (0, &) = — p, (0, 1)> 0

{Fig. 2, curves 1 and 2), py{w, 1) remains negative with an increase in w, while for some unique w, p;w, 1)
is reduced to zero (Fig. 2, curves 3 and 4). Considering that e =1, we can represent the function (2.8) in
the form of an approximate inequality ¢ < 0.5.

We shall now examine the case when

2.9
05 cl<e (2.9)

Suppose (0, uy4) is the region of the noncontinuous solution py(u). Since as u—uxy the point (u, py(w)
approaches without limit to the line u—Fp = o~t, then then

Ugs — Fpa (0, Ugy) = 671, Py (0, Uyy) = lim p, (0, 1) (2.10)
’ U—>Uyt

Considering u, as a function of w, after differentiating (2.10) with respect to w, we find

d a dps —
Ul . gy (t4) [1 —FiR (u*l)] ‘<0 (2.11)

since qy(uxg) < 0 and p,ylu,y) < 0. The inequality (2.11) means that uss falls off monotonically with an in-
crease in w. Ifu,; < € at w = 0, then, on the basis of (2.11) the inequality is also retained for w > 0. In
this case, the solution py(u) does not exist in the region (0, 1). If u,y > € at w = 0, then, as already shown,
pslw, 1) decreases monotonically with increasing w and remaining negative as long as u,4 < €£.does not
occur. Thus, it is proven that for any w, either p,(u) does not exist at (0, 1) or py(w, 1) is negative. There-
fore, we shall restrict the further examination to the solution p;(u).

Proposition 3. For any F, an w can be found such that a solution py{u) will exist in the region (0, 1).

For proof it is necessary to demonstrate the existence of an w, such that u, = . It is evident that

— Qoy 2 -2 )__
< ex = ———— X ——| = D,
oCucs rﬁox[y p(“@ﬂ Bl 28 + VI14D) p<1+ Vitsm ™



The solution of the equation

d ., 2.12
= pO=0 -

has the upper limit py(u) ((11], p. 268). It is not difficult to show
that p; < &,,/w, which means that P; < &,,/w. We select w in
such a way that p = &,,/w and u = ¢ intersect at a point not
higher than the point of intersection of the lines u =¢ and u +
Fp = ¢~l. For this, it is necessary that

D, /o < F1 (ot —¢)

from which
o> Fb, 0l - ge)™!

For such an w in the region (0, £) the point (u, py{u)) can approach without limit to the line u + Fp=
o ~! with the condition that the integral curve p;(u) and the line p= &, /w intersect. But this is impossible,
which means that ux = €,

Note. On the basis of Proposition 3 a solution p; (u) can always be constructed in the region (0, 1). If
py{w, 1) > 0, then, condition (1.12) can always be satisfied by increasing w. If pj{w, 1) < 0, it is natural to
decrease w. However, the case is possible, where pyg(u) reaches the line u + Fp = ¢! before p;(w, 1) is re-
duced to zero. In other words, the case is possible, where w cannot be taken so that either u, < ¢, or
p{w, 1) < 0, i.e., an w does not exist for which p;{w, 1) = 0. Since the inequality (2.2) is of interest only
within the limits of the region (0, ¢), from now on, we shall assume that in (2.5)

24 =exp < — e”s>

1-—oce

We shall demonstrate the existence of an Fy, such that for any F = Fy there is a unique w, for which
the solution of Eq. {1.10) satisfies the conditions (1.11) and (1.12). Let us examine the system

P = F (" —§) (2.13)
o
ke — o (1l —e) >0 (2.14)

and its solution
G =FD,, 0 (1 — oe)™?
F<(t—oe)ed2 (O, 01 —e)[ D001+ &)+ e (1 — )]}~ = F,

‘In realizing (2.13), the function p; (u) exists in all of the region 0 < u < 1. In light of (2.2), it follows
from (2.14) that

Pre(0, 8) —a(l—¢e>0
or

141 (Cl), 1) >O
By increasing w, one can satisfy (1.12) at some unigue w.

We now demonstrate the existence of an Fy, such that if F = F,, a solution of Eq. (1.10) satisfying the
conditions (1.11} and (1.12) does not exist for any w. Let us examine the system

Fo( —s) = (67 —¢) ' (2.15)
Fhs — (671 — 8) > 0 (2.16)

which for condition (2.9) has the solution

o ={1—o&) [Fo (1 — &)l
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Realization of the inequality (2.16) shows that the straight lines p = ku and u = ¢ intersect at a point
not lying below the line u + Fp = ot (Fig. 3). This means that uy < €. With an increase in w, one could
reach a point where u, = & (see Proposition 3), i.e., a position such that pi¢ (€) < F* (¢ —¢), but in this
case, w(l—g) > F (¢—¢) and pigle)— w(l=g) < 0. The situation arises which was spoken of in the note
to Proposition 3. Since the value of ¢ is close to unity, we shall substitute the inequality ¢ > 0.5.

Suppose the set {F;} is such that, if F € {Fy}, then, for it there exists a unique w for which the solu~
tion (1.10) satisfies the conditions (1.11) and (1.12).* In view of the existence of F, the set {F;} is bounded
from above, and consequently, has a precise upper bound. We shall call F, = sup {F;} the critical value;
it determines the limit of propagation of a turbulent flame.

Therefore, as a result of the analysis, we obtain the following:
1) & is nonnegative, if 8 < 0.25 (e2—1) ~ 1.597;

2) the problem of determining the rate of burning has a unique solution for any F, when 0 < ¢ < 0.5;
for 0.5 < ¢ < 1 the solution exists only for 0 = F < Fx, where Fy = sup {Fy}.

3. Analysis of Results

Computations were made of the problem (1.10)-(1.12) on a computer. in order to calculate the quanti-
tative characteristics of turbulent burning and the structure of the flame front. The range of variation of
the parameters is

6<C0,<<14, 0<C<o=<C0.9, 0P <<O15
For 0 < 0 = 0.5, 0 < F < «, while the limiting values of Fx were sought for o > 0.5.

Integral curves of p(u) and functions of the variation in heat release &(u) at ) =10, =0, and ¢ =
0.95 for different values of F are presented in Fig. 4. Curves 1, 2, 3, and 4 correspond to p(u) with dif-
ferent values of F: F =3, 5, 10, and 20, while curves 5, 6, 7, and 8 correspond to &(u} with the same values
of F. In contrast to a laminar flame (F = 0), a turbulent flame (F = 0) is expanded (the maximum gradient
P, decreases with a growth in F), while the maximum averaged heat release is significantly shifted in the
direction of the initial temperature. '

The reaction proceeds near the initial temperature, and the preheating zone in a turbulent flame is
far narrower than the reaction zone. This is seen from Fig. 5, in which the distributions of temperature u
and heat release & are given as functions of ¢ (for F =0 and F =10, §, =10, 8 =0). (The origin of the read-
ing in Fig. 5 is conventional, since Eq. (1.1) is invariant relative to the transformation ¢ + const.)

Asymptotic behavior of &, is observed for F > 4. The variation functions of the characteristic
values of burning: py,, &y, and their locations up and ug are shown in Fig. 6 along with the propagation
rate wy as a function of F. Analogous qualitative results were obtained also for ¢ = 0.

*It can be shown that {F;} as a set on the numerical axis is connected.

324



29 TABLE 1

-l
W% =
A 28 <] N F, T T4 i/t W,y Wy
\( =t 6 10.5 110 5.47 | 0.2168 | 0.4490
0.7
/»Z/ \\// 14 14 196 1.92 |0.0984 | 0.2336
0.04 o4 - !
4 s ¢ 6 5.25 | 27.6 141 10.2004 | 0.2772
= B 0.9
14 8.25 | 68.1 0.61 | 0.0948 | 0.1581
y4 On
.-7-
7 7

=
®
-

We shall make an estimate of the propagation rate of a
Fig. 6 flame wy for F>1 and g, > 1. In this case, in the vicinity of u,
close to the cutoff parameter €, u + Fp ~ ¢1, so that & can be
determined by the approximative equality

21)=(u-Fp)exp[—1:_e—‘;%:—:—%] , p>0 (3.1)
Hence, it follows that &, is attained at
(4 — Fp)n = 2051 (1 + 2B + VT T 4B) (3.2)
and is equal to half the &, for laminar burning
@, =B, (L + 28— VT 4By exp (—-—“_2_-—_—) (3.3)
14+ V1T

Since for F > 1 the maxima p,, and &, approach each other asymptotically (Fig. 6), while u—¢, it
follows from (1.10) taking (3.2) and (3.3) into account that:

o (F>1) = F[0e (1 + 2B + VT 1 4B) — 2] exp (I?;T;Tz’ﬁ) (3.4)

For example, for 6, =10, 8=0, ¢ = 0.95, and F = 26 for (3.4), we obtain wy = 0.564, while a calcula~
tion on the computer gives wy = 0.590 (about 5% disagreement).

On the basis of an analysis of the multiple variants of the calculation, it was established that for
F = 5, wy is represented by the linear dependence wy = N + MF, with an error no worse than 1%, where N
and M are functions of §; and ¢.

In physical variables the kinetic propagation rate of a flame is written in the form

e YT b 6.5

W a0

For F > 5, 1y/7, > 25, therefore, keeping in mind the relay mechanism of the transmission of burn-
ing [7], we obtain

R T B N 5.6)

Here, wy is the total propagation rate of the flame, and N/wy and M/ woz are functions of §; and o.
The inferpolation equation (3.6) linearly "unifies” the earlier known mechanisms of burning: the first term
gives the contribution of the surface model [7], the second gives that of the volumetric model {5], and the
third the microvolumetric [5] or focus model {12]. For F > 1 and ¢ =< 0.5 burning takes place mainly by
the microvolumetric mechanism.

The limiting values of Fx and wx as well as the parameters 7;/7+ and 7{/7; are found for 0.7 < ¢ =
0.9 (Table 1). Their values depend on the kinetics of the chemical reaction.

In conclusion, we note that the stability of the turbulent burning model under examination was not
studied in this work. It is possible that in the region 0 = ¢ =< 0.5 the requirement of stability sets a limit
on the parameter F.
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4. Algorithm for Calculating w

If w satisfies the equation
Op/o—o(l—g=0 (4.1)

then, from the inequality p1g — & /w < 0, we have
o, 1)=pelo, 8§ —o(l - <0
and, conéequently, the solution of (4.1) gives the upper boundary of the interval for the root of the equation
pfo,1)=0 4.2)

The desired w is included within the limits 0 < w < V&, /(1=¢). The root of Eqg. {4.2) is found by the
method of equal partition. Suppose that in the s~th step the interval (w$ A wB) containing the root of (4 2) is
obtained. Then

s .
@51, 0fh) = ©4%2),  F <0

@ og%), i u,<e or pi{a 1) >0
Co=05(0,5+ 0g°)

Equation (1.10) is solved by the method of differences. The calculation leads to the realization of the
inequality

0 — 0,58 4.3)

In all the calculations it was assumed that 6 = 1074, If the inequality (4.3) is satxsfled and py{wS A1) >
0, pt wB, 1) < 0, then, it is assumed that F < F,, while if (4.3) is satisfied, and pj¢ (wA, u) extending up to
u, < &, then, F > F,.
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